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Equilibrium and stationary nonequilibrium states in a chain of colliding harmonic oscillators
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Equilibrium and nonequilibrium properties of a chain of colliding harmonic oscillatdirsy-dong model
are investigated. Our chain is modeled as harmonically bounded particles that can only interact with neigh-
boring particles by hard-core interaction. Between the collisions, particles are just independent harmonic
oscillators. We are especially interested in the stationary nonequilibrium state of the ding-dong model coupled
with two stochastic heat reservoiirsot thermostatedat the ends, whose temperature is different. We check the
Gallavotti-Cohen fluctuation theorefs. Gallavoti and E. G. D. Cohen, Phys. Rev. L&#, 2694(1995] and
also the Evans-Searles ident[. Evans and D. Searles, Phys. Rev.58, 1994 (1994] numerically. It is
verified that the former theorem is satisfied for this system, although the system is not a thermostated system.

PACS numbeps): 05.20-y, 05.45-a, 44.10+i

[. INTRODUCTION investigation of the Fourier law and the Green-Kubo relation
of heat conduction for the ding-dong model is found M.

For more than a decade, nonequilibrium statistical meOur aim here is to verify the GCF[B] and another theorem
chanics has been revived by many authors from the microthe Evans-Searld&€S) identity] [8] which concerns the en-
scopic point of view. A vast literature related to this topic semble of initial conditions, for the ding-dong model with a
has been published. It was actually a fruitful revival. Theheat reservoir, not a thermostat. As mentionef®ina math-
main question there is, “How do the dynamical properties ofematical proof of the GCFT for this type of systédynami-

a given system explain phenomenology derived fromcal system+ stochastic heat reservpiis beyond present
(nonjequilibrium statistical mechanics?” A partial answer mathematical ability(See alsd10] for a generalization to
has been is obtained for a class of hyperbolic systems. Fqrangevin dynamic.Thus we carry out a humerical compu-
instance, the dynamical characterization of hydrodynamigation. As a result, we present an example of the verification
transport properties, especially diffusion, is obtained for ho the GCFT under the stochastic boundary condition.
mogeneous chaotic systems using the escape rate formalism 1,4 organization of this paper is as follows. In Sec. Il, we
[1]. The second example is entropy production by deﬁninqntroduce the ding-dong model. In Sec. lll, the equilibrium

the time evolution of the Gibbs entropy for a given system roperty of the ding-dong model is examined numesrically. In

2]. The phase space contraction plays an important rol . o _
'Ehlzre Angther for?nulation of entrorE)y groductiorﬁ) does not=°%: IV, the stationary nonequilibrium state of the ding-dong
’ del is investigated. We consider heat conduction and en-

need the phase space contraction, but needs coarse grainm . . .
and the thermodynamic lim(3]. A third example is moti- r§py productlon. The GCFT and ES identity are.checked
vated by the results of numerical simulation of nonequilib-numerically. In Sec. V, we summarize our conclusions.
rium molecular dynamicgi.e., a thermostated system or

NoseHover system[4]. Proposing a guiding principléhe

so-called chaotic hypothegjghe fluctuation of a stationary Il. DING-DONG MODEL

nonequilibrium state is characterized by entropy production

EﬁéJ;?ondi:gggr:gﬁgrggFtﬁ named the Gallavottl—Cohenduced as a simplified model of the ding-a-ling model] in

One experimental verification of the GCFT can be carrieathe context of h_eat C(_)nductlon. The dmg-g-llng_model con-
out for the heat conduction in a nonlinear lattice chain. Sincecf'StS of harmonic os_C|IIat0rs placed on a line with freg par-
the work of Fermi, Pasta, and UlafFPU), a number of fucles. The free pgrtlcles are_placed betwegn each ng|ghbor—
models have been numerically investigated. Recently, an eXd harmonic oscillator. In this model, the interaction is the
perimental verification of the GCFT has been done for a FPLglastic collision between the neighboring free particle and
B chain with a thermostd6]. Furthermore, stimulated by the the particle of the oscillator. Between collisions, the free par-
work of [4], the uniqueness of a stationary nonequilibriumticles and harmonic oscillators move independently. The
state and the existence of entropy production in stochastding-dong model is obtained by just removing all free par-
cally driven nonlinear lattice chain have been rigorouslyticles in the ding-a-ling model. Thus, in this case, the neigh-
proved[6]. In this paper, we treat a different model fr¢f1,  boring harmonic oscillators can elastically collide with each
and additionally, under a different conditiofstochastic other. It is not well known, but the ding-dong model is
boundary condition More precisely, we investigate equilib- equivalent to Dawson’s one-dimensional plasma sheet model
rium and stationary nonequilibrium states in the ding-dond12-16. Thus, the ding-dong model is never an artificial
model coupled with a heat reservoir, not a thermostat, espanodel, but a physical model. The Hamiltonian of the ding-
cially the Fourier law and entropy production. A detailed dong model is given as

We introduce the ding-dong modEgf] which was intro-
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2 2 —t
P g =tk tk-1. ©)
H= I:EO >t 1
The collision is elastic. Then if thigh particle collides with
with the elastic constraint the (i+1)th particle, after collision, their momenta are ex-
changed:
gi+1t1=q;. 2

P =Pii1s (4)
g; represents the displacement from tltte lattice point. For
our convenience, we set the lattice constantitel. Par-
ticles move as harmonic oscillators around the lattice point, P i=pi (5
but can collide with the nearest neighbor particles to ex-
change energy. Some statistical properties of the ding-dong
model have been investigated by several authors: Kitahargpere j=1 2,...N—1. Between collisions, the system
et al.[13-14 for the properties of a one-dimensional plasmaobeys the following Hamiltonian equation of ,motion:
and Prosen and Robn[K] for heat conductiorithe Fourier
law) by extensive numerical calculation.

Here we comment on one point of the numerical aspects
of the ding-dong model. Since particles are arranged in a
one-dimensional line and collide with each other, this model
has numerical merit. Almost the time of numerical time evo-
lution is spent for the calculation of the next collision time.
In this case, the use of the heap sort algorithm accelerates thgye map from théth collision to the k+ 1)th collision can
numerical calculation. be constructed as

Next we show the setup of time evolution of the ding-
dong model and explain approximately the behavior of the
system, i.e., chaoticity. Detailed investigation of the ding-
dong model is found ifi7]. First we note the following point.
We investigate the statistical behavior of the ding-dong
model. Thus we consider only two-body collisions, since it is
expected that three-body and higher-body collisions arevhere x=(q;,d5, ... .0n.P1.P2, -...Pn) ". 7(X) is the
events with Lebesgue measure zero. Therefore, “collision"time that the next collision occurs starting from the point
means a two-body collision hereafter. We denotd,athe  7(x) is called the ceiling functionx, is the position and
time that thekth collision occurs andt,},~_., is a set of momentum at théth collision. ® ision for the collision be-

d d
gtdi=Pi giPiT i (6)

= q)collisionoq)T(xk) (7)

oscillator’

collisions. Further, we set the intercollision timg as tween theith and the (+1)th particles is given as
a; 10 0 0O 0 0 0 q;
dz 00 <Py
: : 0 0 :
pi 0 0 0 0 0 0 Pl
p2+ _loo0o--001. 00 -0 0; | ®)
. oo ... ooo0o - 01 ---0 _
pi’ Pi
n oo0...000O0:.:-120 ---0 -
Pi+1 ) ] o ] Pi+1
0 0 0 0 O 0 0 1 _
Pn Pn

) e g
(I)oscillator IS given as
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0y (bt 7(X) P1(ti)sinf 7(x) 1+ g1 (tk)cod 7(x) ]
Qo ti+ 7(%) P2(ti)sin 7(xi) ]+ Az(t) cog 7(xi) ]
an(te+ 7(X) Pr(ti) sin 7(x) ]+ dn(te) cog 7(Xi) ]
D1t 7(x) |~ | Pr(tocod 7061 aa(tosin 70407 |+ ©
P2 (et 7(Xy)) P2(tk)cog 7(Xi) ] — Aa(ti) sinl 7(Xy) ]
Pt + 7(Xg)) Pr(ti)cog 7(Xi) 1= an(ti) sinl 7(Xi) ]
|
wherex, is the kth collision point. With the condition that good agreement with the exponential distribution
the center of mass is zero, if we carry out a certain canonical
transformation, P(r)dr=ae “"dr, (13
X=(q,p)—>X=(Q,P), (10)
where o depends on the total energy and the number of
whereQ=(Qq, ...,.Qn_1),.P=(P1,...,PNn_1), then after particles. This implies that particles randomly collide with
diagonalization, we obtain the Hamiltonian finally: each other.
Second, we check the velocity distribution. Figure 2
1\t ) ) shows the result starting from a certain random initial con-
H=35 2 (MQi+uiPH)=E, (1) dition with the total energf = 2500 and the total number of

particlesN=2500 after 10000 collisions. The distribution

where the\;’s and u;’s are determined by the diagonaliza-
tion. The elastic constraint E¢2) now becomes

behave as a gas system.

well fits a Gaussian distribution, namely, the Maxwell distri-
bution. Therefore, in some sense, the system is expected to

Third, we consider the heat current in the ding-dong

N—1
FOQ)=2 (Ux—Uii10Q=1, (120  model. We define the heat current at tkiéa collision be-
k=1 tween theith and -+ 1)th particles:

wherei=1,2,... N—1 andU;, is the matrix element for

the diagonalization. The Hamiltonian is for an
(N—1)-dimensional anisotropic harmonic oscillator with
hard walls satisfying Eq(12). We can check that the hard
walls surround the stable equilibrium point at the origin.
Hence if the total energy is sufficiently low, the system is
integrable. Because the trajectory goes around the stable
equilibrium point, there is a critical value of the total energy
for chaos[7]. But when the total energy is high enough, the
system behaves like an integrable system. In this case, the
particle moves ballistically and collides with the walls de-
fined in Eq.(12). Therefore, in the intermediate total energy
range, the system exhibits chaos. From numerical calculation
for a few-body system, in this range, the system seems to be
nonhyperbolid 15]. But we expect that a chaotic sea domi-
nates the phase space in this energy range of a system with a
sufficiently large number of particles and the system has ef-
fectively an important requirement of the GCFT, i.e., the
transitive Anosov property.

IIl. EQUILIBRIUM PROPERTIES

In this section, we show the equilibrium properties of the
ding-dong model. First, in order to characterize how particles
interact with each other, we calculate the intercollision time
distribution. Numerical calculation was done for the total
energy E=120 and the number of particleéd=100. The
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FIG. 1. Intercollision time distributioN=100E=120.(a) The

result obtained is depicted in Fig. 1. The distribution showsplot is obtained after fcollisions. (b) Log scale of(a).
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04 and entropy production.
035 | Before introducing the recent theory, we recall the follow-
03 | ing two important facts from thermodynamics. A system
coupled to heat reservoirs having different temperature at the

025 | . .

2 boundaries obeys the Fourier law

£ 02}

-7 .
015 | j=«VT, (15
0.1 ¢ wherej is the heat current vector andis the heat conduc-
0.05 1 tivity. The entropy productiorr(x) is defined as

0 n n n I n c n
$ 6 4 2 0 2 4 6 8 . 1
p o(x)=j-V T/ (16

FIG. 2. Velocity distribution forN=2500E=2500. Starting . L
from a certain initial condition and after long time evolution, this Thus the total entropy productidn of the domain with lin-
plot is obtained. The dotted line is Gaussian fitting. ear temperature gradient for a one-dimensional system is

. 1 R (1 1
(D=5 (Pie1=P) (P 1= P A0 1~ G+ 1) St —ty). 2=deXU(X):J(T—R—T—L)’ (7
(14
S _ o ~whereT, and Ty are the temperature of the left and right
The heat current distribution is depicted in Fig. 3. The plot isheat reservoirs, respectively. Later, this result will be com-

obtained forN=250, E=250. The distribution has an unfa- pared with the numerical calculation of the GCFT and ES
miliar form and is symmetric with respect je=0. identity.

These three distributions in the equilibrium state will be
compared with those in the stationary nonequilibrium state in
Sec. IV. In particular, we will remark the deviation from the
equilibrium case in the stationary nonequilibrium state.

A. Gallavotti-Cohen fluctuation theorem
and Evans-Searles identity

We here briefly summarize the GCH#®] and the ES

IV. STATIONARY NONEQUILIBRIUM STATE, THERMAL identity [8]. The original derivation was for two-dimensional
CONDUCTION, AND ENTROPY PRODUCTION shearing flow with a thermostfpd]. We assume that the sys-

tem is chaotic. More preciselyA) the system is a transitive

In this section, we investigate the stationary nonequilib-anosov system. Further, we assume ttBit the system is
rium state of the ding-dong model, especially the Fourier lavgjissipative and(C) the system is time-reversible. The en-

@ 025 - tropy production is defined as the contraction rate of the
phase space voluni®]. The condition(B) implies that the
02 | ] entropy production is positive for this setting. Dynamical
characterization of entropy production starts from the idea of
0.15 | ] Sinai, Ruelle, and Bowe(BRB), i.e., the construction of the
4 SRB measureu. The SRB measure can be constructed by
01 ] the expansion coefficient of the Poincarap S”. Here we
008 consider the finite time average of the entropy production at
el X:
0 . : . ; “ 712—1
(b) 1

whereSis the Poincarenap. Fluctuation of the entropy pro-
duction from its mean value is characterized dyx). We

0.1 ; denote 7 (p)dp=P(a,e(p,p+dp)) the probability mea-
= sure fora,. We consider the ratio of the probabilities
£ 01t 7,(p)dp and 7 (—p)dp. The GCFT is the following rela-
£ tion:

0.001 | 7.(p)
T _ao)p
=e . 19
WT(_p) ( )
0.0001 —_—
-40 -30 -20 -10 0 10 20 30 40 The proof is given by using the construction of the SRB

! measure(i.e., the expansion coefficientFor the detailed

FIG. 3. Heat current distribution fal=250E=250. (a) Nor-  derivation, se¢4]. This relation is considered to be the result
mal scale. The plot is obtained after®1bllisions. (b) Log scale of  of the large deviation property. In the next subsection, for the
(@). stationary nonequilibrium state of the ding-dong model, we
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check the linearity of Inr(p)/7.(—p) in p. In our experi- 21rp
ment, we do not use a thermostat, but a stochastic heat res- sl
ervoir. Therefore, in the strict sense, the numerical experi-
ments carried out in quite different conditions from those of 191
the GCFT. As a dynamical system, the conditi@y is ef- 18 |

fectively valid, and the conditio(B) is valid. But the condi- = w7l
tion (C), i.e., time-reversality, should be replaced by the )
terminology of stochastic dynamics. On the other hand, the 16
ES identity concerns the ensemble of initial conditip8k 15t
14 L : : : : :
B o (20) 0 10 20 30 40 50
ML(E—p) 7 site
wherey represents the Liouville measure afglis the set FIG. 4. Temperature distributioN=50T, =2.0Tg=1.5. The

of initial conditions having the valug of the observable. plot is obtained starting from a certain initial condition, and after
The formula is very similar to the GCFT. But the ES identity 5% 10° collisipns. The end plo_ts correspond to the temperatures of
measures transient behavior toward the stationary state. Wae 1eft and right heat reservoirs.

have to carefully distinguish them. The difference between

the two theorems is explained in detail[ii7]. In order to check the statistical difference between the

equilibrium state and the stationary nonequilibrium state, we
_ check three distributions investigated for equilibrium states
B. Numerical results in Sec. llI. In Fig. 5, the distribution of intercollision time is
Let us define the heat reservoir. We set the walls at thelepicted N=250T, =2.0Tz=1.5). After 16 collisions
ends of the system. The other side of the wall is the heaand 3x 10° collisions, 10 collisions are sampled. The mean
reservoir. In the numerical calculation, we set the walls at théntercollision time is on the order of 18 for this case. The
first lattice point minus 0.8 and at théth lattice point plus  distribution obtained well fits an exponential distribution.
0.8. All numerical calculation has been done in this settingThis shows that the collisions occur randomly. Compared
The momentum of particles in the heat reservoir is distrib-with the equilibrium case, we cannot see a difference. But in

uted according to the distribution the following two distributions, we can see the difference
between the equilibrium state and the stationary nonequilib-
P(D)dp= M _ p_2 d 21 rium state.
(p)dp= T ex 2T P (22) In Fig. 6, the velocity distribution is shown. As expected,

the distribution shows good agreement with a Gaussian dis-
For the left(right) reservoir, we take the plusinug sign of

momentum. This setting of the heat reservoir is very impor- (@ 140
tant[18]. We set the temperature of the heat reservoir at the 120 ﬁ;;: o
endsT, (left) andTg (right), respectively. When a particle at
the ends i(=1,N) collides with the wall, the particle instan- 100 4
taneously collides with a particle inside the heat reservoir. . 80 r
The temperature of the heat reservoir is sefte-2.0 and & 60 |
Tg=1.5, which were well checked the Fourier law [ifi].
The local temperatur@, around thekth particle is defined as 0
20 ¢
T=(Pk)- (22 oL e
0 0.2 0.04 0.06 0.08 0.1 0.12 0.14

(---) means the time average or phase space average. For t
numerical calculation, we use the time average. ® 1000 ‘ . . .

First we check the Fourier law. Figure 4 is the tempera- Ist —
ture profile N=50,T, =2.0,Tk=1.5). The end plots corre- 100 final -
spond to the temperature of the left and right heat reservoirs, \
respectively. There is an edge effect. The temperature of the 10k ‘

end of the bulk at the leftright) is notT, (TR), respectively.
(This edge effect can be removed by the trick7h We also
used this trick and have done a few numerical calculation.

In P(t)

The result of that is similar to that in this paper. Thus the 01t
edge effect does not change the conclusion of the verification

of the GCFT) Relaxation to the stationary nonequilibrium 0.01
state is very slow. We check the stationary condition from 0

the constancy of the time-averaged local current and tem-
perature. The temperature profile is still a zigzag shape, not FIG. 5. Intercollision time distributionN=250T, =2.0Tg
smooth, but we can see the linear dependence of the Fourier1.5. (a) The plot is obtained after 2@collisions and 3« 10° col-
law. lisions. (b) Log scale of(a).
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0.25 035
_ o oty
= 0.2 - 025 1
0.15 02+
0.1 015
0.05 0.1 ¢
0 ,.,,IJI L L L 0.05 [
-6 -4 2 0 2 4 6 0 . . . .
p 0 50 100 150 200 250
(b) © " " ; ; " site
-1t (b) 0.7
0.6 |
3 2
- 0.5 {
s 3¢t
0.4
-
i 03
5t 02|
-6
01

FIG. 6. Velocity distributiolN=250,T, =2.0,Tr=1.5. The plot 0 ' ‘ ' ;
0 100000 200000 300000 400000

is obtained starting from a certain initial condition, up t@ 10lli- t

sions and X 1Cf collisions. (a) Initial (10° collisions and final

(3x 10 collisions distribution. (b) Log scale. The distribution FIG. 8. Spatial distribution of heat current and relaxation of
tends to a Gaussian distribution but the tail of the distribution ismean heat currenta) Spatial distribution of heat current that oc-
asymmetric. curred up to X 10° collisions starting from a certain initial con-

figuration. N=250T, =2.0,;Tg=1.5 (b) Relaxation of mean heat

tribution (i.e., the Maxwell distribution but toward the sta- current.N=50,T, =2.0Tg=1.5.
tionary state, gradually the tail of the distribution becomes
asymmetric. This asymmetry suggests energy transfer. This
asymmetry is naturally observed in the heat current distributained after 3 10° collisions starting from a certain initial
tion. condition. Although there is still fluctuation, the heat current

Time variation of the heat current distribution is depictedis almost constant over all sites. In Figb8the relaxation of
in Fig. 7. Note that the distribution is not Gaussian as in thehe mean heat Currer\it,=(1/N)Ei’\':1ﬂ,T is depicted forN
equilibrium state. After a long run, the tail of the distribution —50. The relaxation is very slow.
becomes asymmetric, which seems to be evidence of station- The entropy production can be checked by using(E8)
ary energy transfer. We remark that in the stationary nontthe GCFT and Eq.(20) (the ES identity. We define the
equilibrium state, the velocity distribution and heat currentyjstribution of P.(z) of the following quantityz
distribution are asymmetric in their tails. The stationary non-
equilibrium state is close to the equilibrium state in some
sense. J;

In Fig. 8@a), the spatial distribution of the time-averaged z=3- (23)

t+7

heat currenﬂrz(l/r)ft ji(t")dt’ is depicted. It was ob-

st —— In this case, the GCFT becomes
final ———

A
\ P
"P.(-2)

g (l 1
=722=172J, T_R_T_L . (24)

In PGj)

We consider that the system does not possess a thermostat,

NNV 0 || IR || but has a stochastic heat reservoir. Thus this relation is not so
-250-200-150-100 -50 ;? 50 100 150 200 250 trivial for our system. It is worth testing Eq24) numeri-

cally.
FIG. 7. Heat current distributiorN=250T, =2.0Tz=1.5, First, we check the ES identity for our ding-dong model

starting from a certain initial condition, for §Ccollisions and 3 ~ With a heat reservoir. In Fig. 9, we show the resuit (
x 10° collisions After sufficient time evolution, the tail of the dis- =100, =2.0,Tr=1.5). In Fig. 9a), the time evolution of
tribution becomes asymmetric. the mean heat current distribution is depicted. Figues B

R O
NS R W N =D
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FIG. 9. Check of the ES identitfa) Heat current distribution FIG. 10. Check of the GCFTa) Heat current distributiol .(z)
wu.(2) (7=30,60,90) obtained from 50 000 random initial condi- (7=30,60,90) obtained from a given trajectoryb) J vs
tions. (b) J vs (UMIN[u(D/n(—2)], 7=30,60,90. N=100T,  (L/7)In[P()/P(-2)], 7=30,60,90.N=50T =2.0Tg=1.5. The
=2.0Tg=1.5. The line labeled “Theory” corresponds to the the- line labeled “Theory” corresponds to the theoretical sldpeThe
oretical slope>.. GCFT prediction agrees with the theory.

obtained from the time evolution of 50000 random initial from a long-time run. Numerically we estimafe.~0.469,
configurations. The initial condition is prepared as follows. Tr~1.70 (sitt n=N), T ~1.86 (sitt n=1). Thus, X

We checked and fixed the mean average of the total energyz 0.0237. Figure 1®) clearly shows that the linear depen-
With this total energy, the initial position and momentum aredence orz and the slope agrees with the theoretical predic-
randomly sampled. It seems that the distribution tends to #on of X. It is surely shown that the entropy production of
limiting form obeying the central limit theorem. From nu- thermodynamics coincides with the entropy production of
merical calculationJ],, can be estimated a%,~0.400 and the GCFT.

also Tp=1.66, T/ ~1.87 (the temperatures of the particles

n=N and 1, respectively The entropy production is now

3=J.(1Ti—1T[)~0.0271. Note thak is obtained from V. SUMMARY

the actually observed temperature slope of the bulk. In Fig.

9(b), we check the ES identity. We can see the linearity of We have investigated nonequilibrium properties of the
(17)In[m(2)/u(—2)] in z clearly, which suggests that the ES ding-dong model coupled with a heat reservoir motivated by
identity holds and the entropy production is nonzero. But théhe work of[4,5,8,9. We have checked the Fourier law and
entropy production is below our theoretical prediction. Sev-entropy production in this model. Numerical calculation has
eral reason can be considerét) the difficulty of prepara- shown that the GCFT holds and the entropy production is
tion of the ensemble of initial condition&2) the system does surely nonzero. Therefore, we obtain strong evidence that the
not reach the stationary stat8) the boundary effec(4) the =~ GCFT is valid for the case of a heat reserv(gtochastic
size effect, i.e., the thermodynamic limit. Among these posboundary condition In this sense, the numerical result sug-
sibilities, we believe that the reason is poiriis and (2),  gests that the GCFT may be generalized to the case of a
especially point(2). In order to check this, we are actually stochastic boundary condition as was trie§9h For the ES
doing a long-time run. However, our CPU power is not suf-identity, a careful check is needed again. We believe that the
ficient for this numerical calculatiofi.e., long time for the discrepancy is due to the lack of stationarity. This point will
stationarity and ensemble averageis estimated that it will  be clarified in future work.

take about two months on our machine, so this problem is

reserved for future study.
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